Scalable Development and Deployment of LLMs in Manufacturing: Leveraging AI to Enhance Predictive Maintenance, Quality Control, and Process Automation
Keywords:
Large Language Models, predictive maintenanceAbstract
Other sectors including manufacturing evolved using LLMs. Scalability of LLM development and use for manufacturing predictive maintenance, quality control, and process automation is covered in this paper. LLMs may manage many information systems and enormous amounts of data in data-driven enterprises. Research shows that when coupled with advanced machine learning and deep learning, LLMs can foresee equipment breakdowns, insure high-quality production, and automate complex processes better than traditional techniques. Still, LLM generation is challenging. Industrial data heterogeneous, legacy system integration, deployment efficiency, real-time processing. This work presents federated learning for distributed data processing, transfer learning for manufacturing job adaptability, and model compression for edge device deployment in order to extend LLMs.
The paper addresses predictive maintenance and manufacturing LLMs. Extensive sensor data allows LLM-driven predictive maintenance models to foresee equipment faults and maintenance needs. Whereas LLMs employ real-time data analytics to decrease downtime and costs, standard predictive maintenance makes use of past data. By use of NLP and computer vision, LLMs enhance anomaly detection, defect prediction, and production line quality. By providing contextual insights from unstructured data such as operator logs and inspection reports—something ordinary machine learning models cannot—LLMs help to enhance quality control.
References
J. Devlin, M. Chang, K. Lee, and K. Toutanova, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding," Proc. of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 4171-4186, Jun. 2019.
A. Radford, J. Wu, K. Amodei, and D. C. K. P. C. R. Sutskever, "Learning Transferable Visual Models From Natural Language Supervision," Proc. of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8828-8838, Jun. 2021.
H. Zhang, J. Liu, and X. Yang, "Transformers for Predictive Maintenance: An Empirical Study," IEEE Transactions on Industrial Informatics, vol. 19, no. 3, pp. 2041-2050, Mar. 2023.
A. Dosovitskiy, J. Springenberg, and T. R. L. D. H. D. D. S. Fischer, "Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 9, pp. 1734-1747, Sep. 2016.
B. Han, J. Xie, and M. Xie, "Automated Quality Control using Machine Learning: A Review," Journal of Manufacturing Processes, vol. 50, pp. 234-248, Dec. 2022.
L. Yang, J. Zhang, and L. Chen, "Hybrid Approach to Predictive Maintenance Using Deep Learning and LSTM," IEEE Access, vol. 10, pp. 78976-78985, Jul. 2022.
W. Chen, C. Xu, and G. Yang, "Integrating Large Language Models with Robotic Process Automation for Enhanced Manufacturing Efficiency," IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 3400-3408, Apr. 2022.
Y. Liu, J. Zhang, and Y. Shen, "Federated Learning for Privacy-Preserving Data Analysis in Smart Manufacturing," IEEE Transactions on Industrial Informatics, vol. 18, no. 11, pp. 6664-6672, Nov. 2022.
T. B. Hoang, P. Wang, and A. Zhang, "Data-Driven Approaches for Intelligent Manufacturing: A Review," IEEE Transactions on Automation Science and Engineering, vol. 20, no. 1, pp. 232-244, Jan. 2023.
R. Zhang, J. Xu, and X. Yang, "Predictive Maintenance Using Transformers and Ensemble Learning Techniques," IEEE Transactions on Industrial Electronics, vol. 70, no. 12, pp. 11378-11387, Dec. 2023.
G. Yang, M. Han, and L. Yu, "Efficient Deployment of Large Language Models in Edge Computing for Manufacturing Applications," IEEE Internet of Things Journal, vol. 10, no. 4, pp. 3518-3527, Apr. 2023.
H. Kumar, R. Prasad, and S. S. R. A. S. R. Sharma, "Quality Control Using Natural Language Processing and Computer Vision," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 6, pp. 2873-2883, Jun. 2021.
C. Xu, X. Zhao, and J. Liang, "Challenges and Solutions in Scaling Large Language Models for Industrial Applications," IEEE Transactions on Emerging Topics in Computing, vol. 11, no. 1, pp. 100-109, Jan. 2023.
Z. Zhang, Y. Li, and J. Wang, "Leveraging Transfer Learning for Enhanced Predictive Maintenance in Manufacturing Systems," IEEE Transactions on Industrial Informatics, vol. 19, no. 6, pp. 4115-4124, Jun. 2023.
T. Liu, W. Huang, and S. Wu, "Multi-Modal Learning for Process Automation: A Review and Case Study," IEEE Transactions on Automation Science and Engineering, vol. 19, no. 3, pp. 1125-1134, Jul. 2022.
K. Chen, J. Zhang, and L. Xu, "Model Compression Techniques for Large Language Models: A Survey," IEEE Access, vol. 11, pp. 50431-50445, Aug. 2023.
M. Wang, T. Li, and J. Wu, "Integrating Large Language Models with Existing ERP Systems for Enhanced Manufacturing Efficiency," IEEE Transactions on Industrial Informatics, vol. 18, no. 5, pp. 2750-2758, May 2022.
X. Liu, Y. Zhang, and Y. Guo, "Effective Data Integration Strategies for Industrial Applications," IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 7, pp. 2123-2134, Jul. 2022.
J. Hu, L. Yang, and H. Xu, "Challenges in Real-Time Processing of Large Language Models for Manufacturing," IEEE Transactions on Neural Networks and Learning Systems, vol. 34, no. 8, pp. 1234-1246, Aug. 2023.
Z. Zhang, J. He, and X. Zheng, "Advancements in Multi-Modal Learning Approaches for Industrial Applications," IEEE Transactions on Cybernetics, vol. 53, no. 2, pp. 789-798, Feb. 2023.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.